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THE HILBERT TRANSFORM ALONG THE PARABOLA
The classical Hilbert transform

Definition

We define the Hilbert transform

H : L2(R)→ L2(R)

by
Ĥf(ξ) = −i sgn(ξ)f̂(ξ).

This definition is such that, for test functions f ∈ S(R) (which is a dense
subspace), we have

Hf(x) =
1

π
lim
ε→0

∫
|t|>ε

f(x− t)dt
t
.

The Kolmogorov-Riesz theorem states that H can be extended to an
operator such that

H : Lp(R)→ Lp(R), 1 < p <∞,

and
H : L1(R)→ L1,∞(R).
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The classical Hilbert transform

Interpolation theory

Marcinkiewicz’s interpolation theorem

The most important interpolation theorem is Marcinkiewicz’s
interpolation theorem, which essentially says that if T is a sublinear
operator such that

T : Lp0 −→ Lp0,∞,

T : Lp1 −→ Lp1,∞,

is bounded for some 0 < p0 < p1 ≤ ∞,

then

T : Lp −→ Lp

is also bounded for all p0 < p < p1.
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The classical Hilbert transform

The Calderón-Zygmund decomposition

Good and bad parts

Given an integrable function f ∈ L1(Rn), its Calderón-Zygmund
decomposition at height α > 0 is given by

f = g + b,

where g lies in all the Lp-spaces (1 ≤ p ≤ ∞) and b can be written as

b =
∑
j≥0

bj .

In addition, the bj ’s have integral zero and are supported on dyadic cubes
Qj which are pairwise disjoint and satisfy∑

j

|Qj | ≤ α−1‖f‖1.
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The Calderón-Zygmund decomposition

Its payoff

Let us present the first consequence of the CZ decomposition:

We say that an operator T : L2(Rn)→ L2(Rn) is well-localized if∫
Rn\2Q

|Tb(x)|dx ≤ C
∫
Q

|b(x)|dx,

for every function b supported on a cube Q and such that
∫
Rn b = 0.

Calderón-Zygmund’s decompostion allows us to show that if
T : L2 → L2 is well-localized, then

T : L1 → L1,∞.

For example, the classical Hilbert Transform is well-localized.
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The classical Hilbert transform

The Kolmogorov-Riesz theorem

Our goal is to prove that H can be extended to an operator such that

H : Lp(R)→ Lp(R), 1 < p <∞,

and
H : L1(R)→ L1,∞(R).
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The Kolmogorov-Riesz theorem

The fast way

– We prove that H is well-localized and, by Calderón-Zygmund, we have

H : L1(R)→ L1,∞(R).

– We interpolate between this and H : L2 → L2 (which we have by
definition) to obtain

H : Lp(R)→ Lp(R), 1 < p ≤ 2.

– We use a duality argument to obtain boundedness for the rest of p’s,
2 ≤ p <∞.



THE HILBERT TRANSFORM ALONG THE PARABOLA
The classical Hilbert transform

The Kolmogorov-Riesz theorem

The fast way

– We prove that H is well-localized and, by Calderón-Zygmund, we have

H : L1(R)→ L1,∞(R).

– We interpolate between this and H : L2 → L2 (which we have by
definition) to obtain

H : Lp(R)→ Lp(R), 1 < p ≤ 2.

– We use a duality argument to obtain boundedness for the rest of p’s,
2 ≤ p <∞.



THE HILBERT TRANSFORM ALONG THE PARABOLA
The classical Hilbert transform

The Kolmogorov-Riesz theorem

The fast way

– We prove that H is well-localized and, by Calderón-Zygmund, we have

H : L1(R)→ L1,∞(R).

– We interpolate between this and H : L2 → L2 (which we have by
definition) to obtain

H : Lp(R)→ Lp(R), 1 < p ≤ 2.

– We use a duality argument to obtain boundedness for the rest of p’s,
2 ≤ p <∞.



THE HILBERT TRANSFORM ALONG THE PARABOLA
The classical Hilbert transform
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The curious way

– We prove a result that, starting from the hypothesis that H : Lp → Lp,
we have

H : L2p → L2p.

– We use this result repeatedly, starting from p = 2 and obtaining

H : L2k

→ L2k

, k ≥ 1.

– We use interpolation between each couple of powers to conclude
boundedness for 2 ≤ p <∞.
– Again, by a duality argument we get boundedness for 1 < p ≤ 2.
– Finally, we prove that H : L1 → L1,∞ by showing that H is
well-localized as before.
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The Kolmogorov-Riesz theorem

References about the classical Hilbert transform:

J. Duoandikoetxea, Fourier Analysis, AMS (2000).

L. Grafakos, Classical Fourier Analysis, Springer (2008).
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The Hilbert transform along the parabola

Generalization of the Hilbert transform

The Hilbert transform along curves

If f is a "nice function", its Hilbert transform is given by

Hf(x) =
1

π
lim
ε→0

∫
|t|>ε

f(x− t)dt
t
.

If the function f is defined on R2, its natural generalization is

Hf(x1, x2) = lim
ε→0

∫
|t|>ε

f((x1, x2)− (t, t))
dt

t
.

However, we can consider a whole family of operators {HΓ}Γ if we write

HΓf(x1, x2) = lim
ε→0

∫
|t|>ε

f((x1, x2)− Γ(t))
dt

t
,

where Γ(t) is a flat curve in the plane.
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Generalization of the Hilbert transform

Motivation

Let us see where these generalizations arise:

Take the parabolic operator

Lu =
∂u

∂x2
− ∂2u

∂x2
1

.

It is easily checked that Lu can be written as

Lu = T1(Lu)− T2(Lu),

where T̂if = mif̂ and the multipliers satisfy the Homogeneity Condition

m̂i(λx1, λ
2x2) = λ−3m̂i(x1, x2), λ > 0, i = 1, 2.
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The Hilbert transform along the parabola

Generalization of the Hilbert transform

Motivation

After some computations, we observe that studying the solutions of
boundary problems associated with parabolic operators such as L boils
down to the study of operators like

Tf(x1, x2) =

∫ π

0

Ω(θ)Hθf(x1, x2)(1 + sin2(θ))dθ,

where Ω(θ) = K(cos(θ), sin(θ)), K satisfies the previous Homogeneity
Condition and

Hθf(x1, x2) = lim
ε→0

∫
|r|>ε

f(x1 − r cos(θ), x2 − r2 sgn(r) sin(θ))
dr

r
.

Notice that, for a fixed θ ∈ [0, π], Hθ is the Hilbert transform along the
curve

Γ(t) = (t cos(θ), t2 sgn(t) sin(θ)).
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Generalization of the Hilbert transform

Goal

Our goal is to study the boundedness of the Hilbert tranform along the
parabola Γ(t) = (t, t2).

The problem is that HΓ is not well-localized and it does not satisfy the
property of

Lp − boundedness =⇒ L2p − boundedness,

so the techniques that we used for the classical case are no longer useful.
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Van der Corput’s lemma and L2-boundedness

Van der Corput’s lemma

Van der Corput’s lemma is the most basic tool when estimating
oscillatory integrals.

It states that if we have an oscillatory integral of the
form

I(a, b) =

∫ b

a

eih(t)dt,

h is of class Ck and |h(k)(t)| ≥ λ > 0, then

|I(a, b)| ≤ Ck
λ1/k

.

If k = 1, h is also required to be monotonic.

The constants can be computed by Ck = 3 · 2k − 2.



THE HILBERT TRANSFORM ALONG THE PARABOLA
The Hilbert transform along the parabola

Van der Corput’s lemma and L2-boundedness

Van der Corput’s lemma

Van der Corput’s lemma is the most basic tool when estimating
oscillatory integrals. It states that if we have an oscillatory integral of the
form

I(a, b) =

∫ b

a

eih(t)dt,

h is of class Ck and |h(k)(t)| ≥ λ > 0, then

|I(a, b)| ≤ Ck
λ1/k

.

If k = 1, h is also required to be monotonic.

The constants can be computed by Ck = 3 · 2k − 2.



THE HILBERT TRANSFORM ALONG THE PARABOLA
The Hilbert transform along the parabola

Van der Corput’s lemma and L2-boundedness

Van der Corput’s lemma

Van der Corput’s lemma is the most basic tool when estimating
oscillatory integrals. It states that if we have an oscillatory integral of the
form

I(a, b) =

∫ b

a

eih(t)dt,

h is of class Ck and |h(k)(t)| ≥ λ > 0, then

|I(a, b)| ≤ Ck
λ1/k

.

If k = 1, h is also required to be monotonic.

The constants can be computed by Ck = 3 · 2k − 2.



THE HILBERT TRANSFORM ALONG THE PARABOLA
The Hilbert transform along the parabola

Van der Corput’s lemma and L2-boundedness

L2-boundedness

In order to show that HΓ (which is initially defined on S(R2)) can be
extended to an operator

HΓ : L2(R2) −→ L2(R2),

we use Benedeck-Calderón-Panzone theorem.

HΓ can be written as a convolution operator HΓf = K ∗ f and BCP’s
theorem ensures the L2-boundedness of HΓ provided that K satisfies
certain conditions.
One of these conditions is that

|̂̃Kj(ξ)| =

∣∣∣∣∣
∫

1≤|t|≤2

e−2πiξ·(t,t2) dt

t

∣∣∣∣∣ ≤ C

|ξ|ε
,

so we can see why Van der Corput’s lemma plays an essential role in the
L2-boundedness of HΓ.
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Van der Corput’s lemma and L2-boundedness

References about the L2-boundedness of HΓ:

A. Carbery, An Introduction to the Oscillatory Integrals of Harmonic
Analysis, Personal communication.
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Difficulties

The main difference between the classical case and the one along the
parabola is that now, the question of whether

HΓ : L1(R2)→ L1,∞(R2)

is bounded or not is an open problem. Therefore, we cannot use
interpolation theory between L1 and L2 and we are forced to try a
different approach. The main ingredient: Littlewood-Paley theory.
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Littlewood-Paley

This theory tries to find a substitute for the Plancherel theorem when
p 6= 2.

To prove the Lp-boundedness we need to "cut" kernels into dyadic
pieces. Take Ij = [−2j+1,−2j ] ∪ [2j , 2j+1] and define Sj by

Ŝjf(ξ) = χIj (ξ)f̂(ξ).

Then, Plancherel’s theorem yields

‖f‖2 =

∥∥∥∥∥
(∑
j∈Z
|Sjf |2

)1/2
∥∥∥∥∥

2

,

and Littlewood-Paley’s theory says that, for all 1 < p <∞, these
quantities are comparable:

cp‖f‖p ≤

∥∥∥∥∥
(∑
j∈Z
|Sjf |2

)1/2
∥∥∥∥∥
p

≤ Cp‖f‖p.
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Lp-boundedness

We need to consider the maximal operator along the parabola as well:

MΓf(x, y) = sup
h>0

1

2h

∣∣∣∣ ∫ h

−h
f(x− t, y − t2)dt

∣∣∣∣.

Now, we take sequences of measures {µj}j and {σj}j in such a way that

HΓf =
∑
j

µj ∗ f, and MΓf ≤ 2 sup
j
σj ∗ |f |.

Finally, we prove a couple of results concerning sequences of measures
and yielding boundedness for convolution operators as the ones above.
With these theorems, we are able to obtain the sought-after boundedness
estimate.
It is in the proofs of these results where we need to apply
Littlewood-Paley theory.
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M. Christ, Hilbert transforms along curves I. Nilpotent groups, Ann.
of Math. (1985).

J. Duoandikoetxea, Fourier Analysis, AMS (2000).

J. Duoandikoetxea, J. L. Rubio de Francia, Maximal and singular
integral operators via Fourier transform estimates, Invent. Math.
(1986).

A. Nagel, N. M. Rivière, S. Wainger, On Hilbert transforms along
curves II, Amer. J. Math. (1976).
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Further results

Extrapolation theory

Normally, when one has an operator which is bounded on Lp for p > 1
but the case p = 1 remains open, one tries to "get closer" to L1 by
means of extrapolation theory. The main result is Yano’s theorem:

If T : Lp → Lp for p > 1 and the boundedness constant behaves like

C

(p− 1)k

for some C > 0, k > 0, as p→ 1+, then

T : L(logL)k → L1
loc.

We tried to use this approach, but our constant for p > 1 was not sharp
enough near p = 1.
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Further results

Results near p = 1

In 1987, M. Christ and E. M. Stein proved that

HΓ : L(logL)(B)→ L1,∞(B)

for every bounded set B ⊆ R2.

In order to do this, they introduce a
variant of the Calderón-Zygmund decomposition to find an Lp-estimate
for p > 1 with constant behaving like

1

p− 1
as p→ 1+.

This is used, together with Yano’s extrapolation theorem, for the "bad
part" of the decomposition. For the "good part", they only need the
properties derived from the decomposition result.
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Further results

Results near p = 1

In 2004, A. Seeger, T. Tao and J. Wright showed the best result near L1

that is known so far, mainly that

HΓ : L(log logL)(R2)→ L1,∞(R2).

Here, they also use a new variant of the Calderón-Zygmund
decomposition.
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M. J. Carro, New extrapolation estimates, J. Funct. Anal. (2000).

M. J. Carro, On the range space of Yano’s extrapolation theorem
and new extrapolation estimates at infinity, Proceedings of the 6th
International Conference on Harmonic Analysis and PDE’s (2002).

M. Christ, E. M. Stein, A remark on singular Calderón-Zygmund
theory, Proc. Amer. Math. Soc. (1987).

A. Seeger, T. Tao, J. Wright, Singular maximal functions and Radon
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S. Yano, Notes on Fourier analysis XXIX: An extrapolation theorem,
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A glimpse at the future

– It seems natural to think that if we improve Yano’s theorem, we might
achieve L(log log logL)-estimates. With this motivation, one can try to
work on this theory and later apply it to operators for which the case
p = 1 is still open.

– The study of the different variations of the Calderón-Zygmund
decomposition seems also advisable, since the last two main results in
this direction use this approach.

– Finally, the question of whether HΓ : L1(R2)→ L1,∞(R2) or not
would be another ambitious goal. An extrapolation argument would not
work and one would have to find an original, new strategy.
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Thanks for your attention!
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